Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Opt Lett ; 49(7): 1774-1777, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560860

RESUMO

An ultra-broadband TM-pass polarizer is designed, fabricated, and experimentally demonstrated based on subwavelength grating (SWG) metamaterials in a lithium niobate on an insulator (LNOI) platform. According to our simulation, the designed device is predicted to work at a 220 nm wavelength range from 1460 to 1680 nm, covering the S-, C-, L-, U-bands of optical fiber communication. By depositing and subsequently etching a silicon nitride thin film atop the LNOI chip, the SWG structures are formed successfully by using complementary metal-oxide semiconductor (CMOS)-compatible fabrication processes. The measured results show a high polarization extinction ratio larger than 20 dB and a relatively low insertion loss below 2.5 dB over a 130 nm wavelength range from 1500 to 1630 nm, mainly limited by the operation bandwidth of our laser source.

2.
Opt Express ; 31(22): 35971-35981, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017757

RESUMO

Optical equalization can be used for chromatic dispersion compensation in optical communication systems to improve the system performance; however, optical signal processing (OSP) is generally specifically designed for transmission channels, that is non-adaptive to dynamic transmission distortions compared with digital signal processing (DSP). In this contribution, we demonstrate optical equalization using a photonic integrated circuit (PIC) filter for chromatic dispersion compensation, with static and adaptive techniques: (a) the static optical equalizer is calibrated based on the known fiber dispersion and length, by using the fractional delay reference method; (b) the adaptive optical equalizer is updated iteratively to compensate transmission impairments based on a least-mean squares (LMS) algorithm. Experimental results show that both the static optical equalizer and the adaptive optical LMS equalizer can give an 18-dB Q-factor for a 14-Gbd QPSK signal transmitting over 30 km. To highlight the capability of the optical equalizers, we use simulations to show the improvement in dispersion compensating characteristics by implementing additional taps.

3.
Opt Express ; 31(23): 37749-37762, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017898

RESUMO

Soliton crystals are a novel form of microcomb, with relatively high conversion efficiency, good thermal robustness, and simple initiation among the methods to generate them. Soliton crystals can be easily generated in microring resonators with an appropriate mode-crossing. However, fabrication defects can significantly affect the mode-crossing placement and strength in devices. To enable soliton crystal states to be harnessed for a broader range of microcomb applications, we need a better understanding of the link between mode-crossing properties and the desired soliton crystal properties. Here, we investigate how to generate the same soliton crystal state in two different microrings, how changes in microring temperature change the mode-crossing properties, and how mode-crossing properties affect the generation of our desired soliton crystal state. We find that temperature affects the mode-crossing position in these rings but without major changes in the mode-crossing strength. We find that our wanted state can be generated over a device temperature range of 25 ∘C, with different mode-crossing properties, and is insensitive to the precise mode-crossing position between resonances.

4.
Opt Express ; 31(21): 34189-34200, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859180

RESUMO

Ridge resonators are a recently introduced integrated photonic circuit element based on bound states in the continuum (BICs) which can produce a single, sharp resonance over a broad wavelength range with high extinction ratio. However, to excite these resonators, a broad beam of laterally unbound slab mode is required, resulting in a large device footprint, which is not attractive for integrated photonic circuits. In this contribution, we propose and numerically validate a guided-mode waveguide structure that can be analogue to the BIC-based ridge resonators. Our simulations show that the proposed guided-mode waveguide structure can produce resonances with similar characteristics, yet with a significantly reduced footprint. Furthermore, we investigate the influence of the resonator's dimensions on the bandwidth of the resonance, demonstrating that resonances with Q-factors from low to very high (> 10000) are feasible. We believe that the reduced footprint and ability to design filters systematically make the guided-mode waveguide resonators an attractive photonic circuit component with particular value for foundry fabricated silicon photonic circuits.

5.
Opt Lett ; 48(17): 4713-4716, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656593

RESUMO

Lithium niobate on insulator (LNOI) platforms promise unique advantages in realizing high-speed, large-capacity, and large-scale photonic integrated circuits (PICs) by leveraging lithium niobate's attractive material properties, which include electro-optic and nonlinear optic properties, low material loss, and a wide transparency window. Optical mode interleavers can increase the functionality of future PICs in LNOI by enabling optical mode division multiplexing (MDM) systems, allowing variable mode assignment while maintaining high channel utilization and capacity. In this Letter, we experimentally demonstrate an optical mode interleaver based on an asymmetric Y-junction on the LNOI platform, which exhibits an insertion loss of below 0.46 dB and modal cross talk of below -13.0 dB over a wavelength range of 1500-1600 nm. The demonstrated mode interleaver will be an attractive circuit component in future high-speed and large-capacity PICs due to its simple structure, scalability, and capacity for efficient and flexible mode manipulation on the LNOI platform.

6.
Opt Express ; 31(7): 11610-11623, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155792

RESUMO

Reservoir computing is an analog bio-inspired computation scheme for efficiently processing time-dependent signals, the photonic implementations of which promise a combination of massive parallel information processing, low power consumption, and high-speed operation. However, most of these implementations, especially for the case of time-delay reservoir computing, require extensive multi-dimensional parameter optimization to find the optimal combination of parameters for a given task. We propose a novel, largely passive integrated photonic TDRC scheme based on an asymmetric Mach-Zehnder interferometer in a self-feedback configuration, where the nonlinearity is provided by the photodetector, and with only one tunable parameter in the form of a phase shifting element that, as a result of our configuration, allows also to tune the feedback strength, consequently tuning the memory capacity in a lossless manner. Through numerical simulations, we show that the proposed scheme achieves good performance -when compared to other integrated photonic architectures- on the temporal bitwise XOR task and various time series prediction tasks, while greatly reducing hardware and operational complexity.

7.
Opt Express ; 31(5): 7277-7289, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859863

RESUMO

Photon-pair sources based on thin film lithium niobate on insulator technology have a great potential for integrated optical quantum information processing. We report on such a source of correlated twin-photon pairs generated by spontaneous parametric down conversion in a silicon nitride (SiN) rib loaded thin film periodically poled lithium niobate (LN) waveguide. The generated correlated photon pairs have a wavelength centred at 1560 nm compatible with present telecom infrastructure, a large bandwidth (21 THz) and a brightness of ∼2.5 × 105 pairs/s/mW/GHz. Using the Hanbury Brown and Twiss effect, we have also shown heralded single photon emission, achieving an autocorrelation g H(2)(0)≃0.04.

8.
Res Pract Thromb Haemost ; 7(1): 100037, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36846647

RESUMO

Background: Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives: We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods: Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results: We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion: This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.

9.
Opt Express ; 31(1): 626-634, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606997

RESUMO

Integrated photonic resonators based on bound states in the continuum (BICs) on the silicon-on-insulator (SOI) platform have the potential for novel, mass-manufacturable resonant devices. While the nature of BIC-based ridge resonators requires the resonators to be extended in the (axial) propagation direction of the resonant mode, the requirement for excitation from the quasi-continuum extends the resonator structures also in the lateral dimensions, resulting in large device footprints. To overcome this footprint requirement, we investigate the translation of BIC-based ridge resonators into a guided mode system with finite lateral dimensions. We draw analogies between the resulting waveguide system and the BIC-based resonators and numerically demonstrate that, analog to the BIC-based resonators, such a waveguide system can exhibit spectrally narrow-band inversion of its transmissive behavior.

10.
Science ; 379(6627): eabj4396, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603073

RESUMO

Lithium niobate (LN), first synthesized 70 years ago, has been widely used in diverse applications ranging from communications to quantum optics. These high-volume commercial applications have provided the economic means to establish a mature manufacturing and processing industry for high-quality LN crystals and wafers. Breakthrough science demonstrations to commercial products have been achieved owing to the ability of LN to generate and manipulate electromagnetic waves across a broad spectrum, from microwave to ultraviolet frequencies. Here, we provide a high-level Review of the history of LN as an optical material, its different photonic platforms, engineering concepts, spectral coverage, and essential applications before providing an outlook for the future of LN.

11.
Opt Lett ; 48(1): 171-174, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563398

RESUMO

Lithium niobate on insulator (LNOI) is a promising platform for high-speed photonic integrated circuits (PICs) that are used for communication systems due to the excellent electro-optic properties of lithium niobate (LN). In such circuits, the high-speed electro-optical modulators and switches need to be integrated with passive circuit components that are used for routing the optical signals. Polarization beam splitters (PBSs) are one of the fundamental passive circuit components for high-speed PICs that can be used to (de)multiplex two orthogonal polarization optical modes, enabling on-chip polarization division multiplexing (PDM) systems, which are suitable for enhancing the data capacity of PICs. In this Letter, we design and experimentally demonstrate a high-performance PBS constructed by a photonic crystal (PC)-assisted multimode interference (MMI) coupler. The measured polarization extinction ratio (ER) of the fabricated device is 15 dB in the wavelength range from 1525 to 1565 nm, which makes them suitable for the high-speed and large data capacity PICs required for future communication systems.

12.
Front Immunol ; 13: 918254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466914

RESUMO

High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Glioblastoma , Neoplasias Hepáticas , Linfoma não Hodgkin , Neoplasias Ovarianas , Feminino , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , Biomarcadores Tumorais
13.
Opt Lett ; 47(14): 3531-3534, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838720

RESUMO

The manipulation of optical modes directly in a multimode waveguide without affecting the transmission of undesired signal carriers is of significance to realize a flexible and simple structured optical network-on-chip. In this Letter, an arbitrary optical mode and wavelength carrier access scheme is proposed based on a series of multimode microring resonators and one multimode bus waveguide with constant width. As a proof-of-concept, a three-mode (de)multiplexing device is designed, fabricated, and experimentally demonstrated. A new, to the best of our knowledge, phase-matching idea is employed to keep the bus waveguide width constant. The mode coupling regions and transmission regions of the microring resonators are designed carefully to selectively couple and transmit different optical modes. The extinction ratio of the microring resonators is larger than 21.0 dB. The mode and wavelength cross-talk for directly (de)multiplexing are less than -12.8 dB and -19.0 dB, respectively. It would be a good candidate for future large-scale multidimensional optical networks.

14.
BMC Biol ; 20(1): 73, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331224

RESUMO

BACKGROUND: Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated. RESULTS: Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement. We define an extensional strain sensing "mechanosome" in platelets involving cooperative Ca2+ signaling driven by the mechanosensitive channel Piezo1 (as the primary strain sensor) and the fast ATP gated channel P2X1 (as the secondary signal amplifier). We demonstrate that type II PI3 kinase C2α activity (acting as a "clutch") couples extensional strain to the mechanosome. CONCLUSIONS: Our findings suggest that platelets are adapted to rapidly respond to supraphysiological extensional strain dynamics, rather than the peak magnitude of imposed wall shear stress. In the context of overall platelet activation and thrombosis, we posit that "extensional strain sensing" acts as a priming mechanism in response to threshold levels of extensional strain allowing platelets to form downstream adhesive interactions more rapidly under the limiting effects of supraphysiological hemodynamics.


Assuntos
Ativação Plaquetária , Trombose , Plaquetas/metabolismo , Hemodinâmica , Humanos , Canais Iônicos , Estresse Mecânico , Fator de von Willebrand/metabolismo
15.
Biosens Bioelectron ; 197: 113770, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768065

RESUMO

Cancer is one of the leading cause of death worldwide. Lung cancer (LCa) and prostate cancer (PCa) are the two most common ones particularly among men with about 20% of aggressive metastatic form leading to shorter overall survival. In recent years, circulating tumor cells (CTCs) have been investigated extensively for their role in metastatic progression and their involvement in reduced overall survival and treatment responses. Analysis of these cells and their associated biomarkers as "liquid biopsy" can provide valuable real-time information regarding the disease state and can be a potential avenue for early-stage detection and possible selection of personalized treatments. This review focuses on the role of CTCs and their associated biomarkers in lung and prostate cancer, as well as the shortcomings of conventional methods for their isolation and analysis. To overcome these drawbacks, biosensors are an elegant alternative because they are capable of providing valuable multiplexed information in real-time and analyzing biomarkers at lower concentrations. A comparative analysis of different transducing elements specific for the analysis of cancer cell and cancer biomarkers have been compiled in this review.


Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Neoplasias da Próstata , Biomarcadores Tumorais , Humanos , Pulmão , Masculino , Neoplasias da Próstata/diagnóstico
16.
Biosens Bioelectron ; 198: 113814, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823964

RESUMO

The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Células HEK293 , Humanos , Leucócitos Mononucleares , Neoplasias/diagnóstico , Óxidos , Análise Espectral Raman
17.
Opt Lett ; 46(23): 5986-5989, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851940

RESUMO

Electro-optic (EO) modulators, which convert signals from the electrical to optical domain plays a key role in modern optical communication systems. Lithium niobate on insulator (LNOI) technology has emerged as a competitive solution to realize high-performance integrated EO modulators. In this Letter, we design and experimentally demonstrate a Mach-Zehnder interferometer-based modulator on a silicon nitride loaded LNOI platform, which not only takes full advantage of the excellent EO effect of LiNbO3, but also avoids the direct etching of LiNbO3 thin film. The measured half-wave voltage length product of the fabricated modulator is 2.24 V·cm, and the extinction ratio is ∼20dB. Moreover, the 3 dB EO bandwidth is ∼30GHz, while the modulated data rate for on-off key signals can reach up to 80 Gbps.

18.
Opt Express ; 29(21): 33067-33076, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809125

RESUMO

Automated defect inspection is becoming increasingly important for advanced manufacturing. The ability to automatically inspect for critical defects early in the production cycle can reduce production costs and resources on unnecessary manufacturing steps. While there are many inspection techniques available, samples from early in a production workflow can prove challenging as they may still have systematic tooling marks, causing preferential scattering and hindering defect extraction. We propose a new imaging technique that exploits the preferential scattering from a technical surface to generate predictable fringe patterns on the sample's surface using only an array of LEDs. The patterns from this adapted fringe projection technique are imaged, and phase shifting algorithms are used to recover surface undulations on the sample. We implement this technique in the context of Hard Disk Drive platters that exhibit tooling marks from the lapping process and show that it is possible to image both highly scattering pits and scratches, as well as slow surface undulations with the same apparatus.

19.
Opt Express ; 29(17): 27092-27103, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615131

RESUMO

Photonic resonators based on bound states in the continuum are attractive for sensing and telecommunication applications, as they have the potential to achieve ultra-high Q-factor resonators in a compact footprint. Recently, ridge resonators - leaky mode resonators based on a bound state in the continuum - have been demonstrated on a scalable photonic integrated circuit platform. However, high Q-factor ridge resonators have thus far not been achieved. In this contribution, we investigate the influence of excitation beam width and optical losses on the spectral response of ridge resonators. We show that for practical applications, the space required of the excitation beam is the limiting factor on the highest achievable Q-factor.

20.
Front Oncol ; 11: 692142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307156

RESUMO

Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA